메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hye-Young Song (National Institute of Agricultural Sciences) Byeong-Hyo Cho (National Institute of Agricultural Sciences) Yong-Hyun Kim (National Institute of Agricultural Sciences) Kyoung-Chul Kim (National Institute of Agricultural Sciences)
저널정보
충남대학교 농업과학연구소 Korean Journal of Agricultural Science Korean Journal of Agricultural Science Vol.49 No.1
발행연도
2022.3
수록면
129 - 136 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study, we aimed to develop a maturity classification model for tomatoes using hyperspectral imaging in the range of 400 - 1,000 nm. Fifty-seven tomatoes harvested in August and November of 2021 were used as the sample set, and hyperspectral data was extracted from the surfaces of these tomatoes. A combined method of SNV (standard normal variate) and SG (Savitzky-Golay) methods was used for the pre-processing of the hyperspectral data. In addition, the hyperspectral data were analyzed for all maturity stages and considering bandwidths with different FWHM (full width at half maximum) values of 2, 25, and 50 nm. The PCA (principal component analysis) method was used to analyze the principal components related to maturity stages for the tomatoes. As a result, 500 - 550 nm and 650 - 700 nm bands were found to be related to the maturity stages of tomatoes. In addition, PC1 and PC2 explained approximately 97% of the variance at all FWHM conditions and thus were used as input data for classification model training based on the SVM (support vector machine). The SVM models were able to classify tomato maturity into five stages (Green, Turning, Pink, Light red, and Red) with over 95% accuracy regardless of the FWHM condition. Therefore, it was considered that hyperspectral data with 50 nm FWHM and SVM is feasible for use in the classification of tomato maturity into five stages.

목차

Abstract
Introduction
Materials and Methods
Results and Discussion
Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0