메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김도원 (Kangwon National University) 김민규 (ZIOVISION) 김윤 (Kangwon National University) 한선숙 (Kangwon National University Hospital) 허정원 (Kangwon National University) 최현수 (Seoul National University of Science and Technology)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제27권 제12호(통권 제225호)
발행연도
2022.12
수록면
69 - 76 (8page)

이용수

DBpia Top 10%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 MIMIC-IV(Medical Information Mart for Intensive Care) v2.0 데이터를 이용한 시계열 데이터의 정제 및 가공 방법을 제안한다. 더불어 해당 가공법을 기반으로 정제한 데이터셋을 활용하여 구축한 기계학습 기반의 욕창 조기 경보 시스템을 통해 해당 가공 방법의 유의성을 검증하였다. 구현된 욕창 조기 경보 시스템은 병변이 발생하기 전 12, 24시간에 미리 의료진에게 경보를 주는 시스템이다. 전자의무기록(Electronic Medical Record; EMR) 시스템과 연동하여 실시간으로 환자의 욕창 발생 위험도를 의료진에게 알려 중환자 의사결정을 지원하고, 나아가 효율적인 의료 자원 배분을 가능하게 한다. 여러 기계학습 모델 중 GRU 모델을 사용하였을 때, AUROC 평가지표를 기준으로 발생 전 12시간이 0.831, 24시간이 0.822로 가장 좋은 성능을 보였다.

목차

Abstract
요약
I. Introduction
II. Related works
III. The Proposed Scheme
IV. Experiment
V. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-004-000290137