메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
MYUNGHYUN JUNG (NATIONAL INSTITUTE FOR MATHEMATICAL SCIENCES) SEYEON LEE (NATIONAL INSTITUTE FOR MATHEMATICAL SCIENCES) MINJUNG GIM (NATIONAL INSTITUTE FOR MATHEMATICAL SCIENCES) HYUNGJO KIM (KOREA ASSOCIATION OF MACHINERY INDUSTRY) JAEHO LEE (KOREA ASSOCIATION OF MACHINERY INDUSTRY)
저널정보
한국산업응용수학회 JOURNAL OF THE KOREAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS Journal of the Korean Society for Industrial and Applied Mathematics Vol.26 No.4
발행연도
2022.12
수록면
280 - 295 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper contains an introduction to industrial problems, solutions, and results conducted with the Korea Association of Machinery Industry. The client company commissioned the problem of upgrading the method of identifying global supply risky items. Accordingly, the factors affecting the supply and demand of imported items in the global supply chain were identified and the method of selecting risky items was studied and delivered. Through research and discussions with the client companies, it is confirmed that the most suitable factors for identifying global supply risky items are ’import size’, ’import dependence’, and ’trend abnormality’. The meaning of each indicator is introduced, and risky items are selected using export/import data until October 2022. Through this paper, it is expected that countries and companies will be able to identify global supply risky items in advance and prepare for risks in the new normal situation: the economic situation caused by infectious diseases such as the COVID-19 pandemic; and the export/import regulation due to geopolitical problems. The client company will include in his report, the method presented in this paper and the risky items selected by the method.

목차

ABSTRACT
1. INTRODUCTION
2. RELATED RESEARCH
3. PROPOSED METHOD
4. RESULTS AND CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-410-000318861