메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hyeonsoo Shin (Korea Maritime & Ocean University) Chiyeol Kim (Korea Maritime & Ocean University) Hwanseong Kim (Korea Maritime & Ocean University)
저널정보
한국마린엔지니어링학회 Journal of Advanced Marine Engineering and Technology (JAMET) 한국마린엔지니어링학회지 제46권 제6호
발행연도
2022.12
수록면
394 - 401 (8page)
DOI
10.5916/jamet.2022.46.6.394

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study proposes a long short-term memory neural network model to predict the waiting time of container vessels at Busan Port. Based on Port Management Information System (Port-MIS) data, the vessel waiting time and vessel service time of container vessels in Busan Port were extracted from the vessel calling status (VCS) between January 2001 and August 2022. The method and procedures for calculating the vessel waiting time and vessel service time using the time stamp, call sign, number of arrivals, vessel type, navigation status, and facility code are described for ongoing measurements. Additionally, a multivariate long short-term memory model was applied to predict the future vessel waiting time with the vessel service time, number of waiting vessels, and container throughput as the input features. Predictions were made multiple times with different window sizes, and the mean square error, mean absolute error, and root mean square error were used to assess the performance of the model. The results prove the feasibility of using the long short-term memory model for predicting the vessel waiting time. The computation method and prediction model of this study provide significant implications and support shipping market participants and port authorities in making more informed decisions regarding the utilization of port facilities and the upcoming port congestion status.

목차

Abstract
1. Introduction
2. Port-MIS (Port Management Information System) data
3. Port-MIS data-driven vessel waiting/service time computation
4. Vessel waiting time prediction with LSTM
5. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-559-000342903