메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박진상 (경상국립대학교) 송민재 (경상국립대학교) 최은주 (한국항공우주연구원) 김병수 (경상국립대학교) 문용호 (경상국립대학교)
저널정보
항공우주시스템공학회 항공우주시스템공학회지 항공우주시스템공학회지 제16권 제4호
발행연도
2022.8
수록면
45 - 52 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 차세대 운송시스템으로 주목받고 있는 UAM 분야에서 무인항공기 활용을 위한 기술 개발이 활발히 진행되고 있다. 이러한 기술이 적용된 무인항공기는 주로 도심에서 운용되기 때문에 추락사고를 예방하는 것이 중요하다. 그러나 충돌이 발생되는 무인항공기는 비선형성이 강하기 때문에 비정상 비행상태를 예측하는 것은 쉽지 않은 일이다. 본 논문에서는 CNN-LSTM 혼합모델을 이용하여 무인항공기의 비행상태를 예측하는 방법을 제안한다. 제안 모델은 비행 데이터간의 시간적, 공간적 특징을 추출하는 CNN 모델과 추출된 특징의 장단기 시간 의존성을 추출하는 LSTM 모델을 결합하여 미래의 특정 시점에서 비행 상태변수를 예측한다. 모의 실험은 제안하는 방법이 기존 인공신경망 모델에 기반한 예측 방법보다 우수한 성능을 보인다.

목차

Abstract
초록
1. 서론
2. 기존 인공신경망 기반 비행 상태 예측
3. 제안하는 혼합 모델기반 예측 기법
4. 모의 실험 및 결과
5. 결론
References

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0