메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Andri Agustav Wirabudi (Hanbat National University) Heeji Han (Hanbat National University) Junho Bang (Hanbat National University) Haechul Choi (Hanbat National University)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제27권 제7호
발행연도
2022.12
수록면
999 - 1,010 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The increase in vehicle purchases worldwide is having a very significant impact on the availability of parking spaces. In particular, since it is difficult to secure a parking space in an urban area, it may be of great help to the driver to check vehicle parking information in advance. However, the current parking lot information is still operated semi-manually, such as notifications. Therefore, in this study, we propose a system for detecting a parking space using a relatively simple image processing method based on an image taken from the sky and evaluate its performance. The proposed method first converts the captured RGB image into a black-and-white binary image. This is to simplify the calculation for detection using discrete information. Next, a morphological operation is applied to increase the clarity of the binary image, and a template mask in the form of a bounding box indicating a parking space is applied to check the parking state. Twelve image samples and 2181 total of test, were used for the experiment, and a threshold of 40% was used to detect each parking space. The experimental results showed that information on the availability of parking spaces for parking users was provided with an accuracy of 95%. Although the number of experimental images is somewhat insufficient to address the generality of accuracy, it is possible to confirm the possibility of parking space detection with a simple image processing method.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Proposed Method
Ⅲ. Experimental Result
Ⅳ. Conclusion
References

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-567-000326101