메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Loris Ventura (Politecnico di Torino) Stefano A. Malan (Politecnico di Torino)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2022
발행연도
2022.11
수록면
354 - 359 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The tightening of the diesel pollutants emissions regulations has made the performances obtainable from steady-state map controls, commonly employed in Internal Combustion Engine (ICE) management, unsatisfactory. To overcome these performance limitations, control systems have to cope with the engine transient operation conditions, coupling between its subsystem dynamics, and the trade-off between different requirements to efficiently manage the engine. The work demonstrates the deployment of a reference generator that coordinates the air path and combustion control systems of a turbocharged diesel engine for heavy-duty applications. The control system coordinator is based on neural networks and allows to exploit the best performance of the two control systems. The key idea is to generate air path targets, intake O₂ concentration and Intake MAnifold Pressure (IMAP), coherent with the ones of the combustion control system, engine load and engine-out Nitrogen Oxides (NOx). In this way, the air path control system provides the global conditions for the correct functioning of the engine, while, in cooperation, the combustion control will react to fast changes in the engine operating state and compensate for the remaining deviations with respect to load and NOx targets. Reference generator networks are suitable for further real-time implementation on rapid-prototyping hardware and their performance was overall good.

목차

Abstract
1. INTRODUCTION
2. PROBLEM DEFINITION
3. COORDINATOR
4. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0