메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Yonghwan Moon (Korea University) Jihoon Kim (Korea Institute of Science and Technology) Suhun Jung (Korea Institute of Science and Technology) Sang Kyung Kim (Korea Institute of Science and Technology) Jeongryul Kim (Korea Institute of Science and Technology) Keri Kim (Korea Institute of Science and Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2022
발행연도
2022.11
수록면
1,808 - 1,811 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Due to the worldwide spread of COVID-19, each government invests many human resources and money in screening tests. The spread of the virus has led to the development of robots that track the location of specimen collection or drive directly through master-slave devices by installing special equipment on patients" noses to reduce the physical burden on medical staff and prevent infection during screening tests. Sampling robots proposed in previous studies have a rather complicated specimen collection process or make it impossible to collect specimens when the patient cannot wear special equipment. Therefore, we propose a deep learning-based model that predicts the nasopharyngeal specimen sampling path without additional equipment. The test bench for the collection of learning datasets was configured, and the nasopharyngeal specimen sampling path was expressed using an augmented reality marker to learn the estimated value. In addition, we add weight factors to the proposed model to compare the root mean square error of the direction vector.

목차

Abstract
1. INTRODUCTION
2. METHODS
3. RESULTS
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0