메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ghulam Musa Raza (Hongik University) Byung-Seo Kim (Hongik University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.12 No.1
발행연도
2023.2
수록면
72 - 79 (8page)
DOI
10.5573/IEIESPC.2023.12.1.72

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The COVID-19 pandemic has greatly affected our society badly. It has been a subject of discussion since 2019 due to the increased prevalence of social media and its extensive use, and it has been a source of tension, fear, and disappointment for people all over the world. In this research, we took data from COVID-19 tweets from 10 different regions from July 25, 2020, to August 29, 2020. Using the well-known word embedding technique count-vectorizer, we experimented with different machine learning classifiers on data to train deep neural networks to improve the accuracy of predicted opinions with a low elapsed time. In addition, we collected PCR results from these regions for the same time interval. We compared the opinions in the form of positive or negative responses with the results of the PCR tests per million people. With the help of the results, We figured out a real-time international measure to detect these regions’ behaviors for any future pandemic. If we know how a region thinks about an upcoming pandemic, then we can predict the region’s real-time behavior for the particular pandemic. This would happen if we had past case studies to compare, like in our proposed research.

목차

Abstract
1. Introduction
2. Literature Review
3. Proposed Methodology
4. Results
5. Discussion & Recommendations
6. Conclusion
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-569-000401316