메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Wenhuai Li (China Nuclear Power Technology Research Institute Co., Ltd) Peng Ding (China Nuclear Power Technology Research Institute Co., Ltd) Wenqing Xia (China Nuclear Power Technology Research Institute Co., Ltd) Shu Chen (China Nuclear Power Technology Research Institute Co., Ltd) Fengwan Yu (China Nuclear Power Technology Research Institute Co., Ltd) Chengjie Duan (China Nuclear Power Technology Research Institute Co., Ltd) Dawei Cui (China Nuclear Power Technology Research Institute Co., Ltd) Chen Chen (China Nuclear Power Technology Research Institute Co., Ltd)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제54권 제2호
발행연도
2022.2
수록면
617 - 626 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
To effectively monitor the variety of distributions of neutron flux, fuel power or temperatures in thereactor core, usually the ex-core and in-core neutron detectors are employed. The thermocouples fortemperature measurement are installed in the coolant inlet or outlet of the respective fuel assemblies. Itis necessary to reconstruct the measurement information of the whole reactor position. However, thereading of different types of detector in the core reflects different aspects of the 3D power distribution. The feasibility of reconstruction the core three-dimension power distribution by using different combinations of in-core, ex-core and thermocouples detectors is analyzed in this paper to synthesize theuseful information of various detectors. A comparison of multilayer perceptron (MLP) network and radialbasis function (RBF) network is performed. RBF results are more extreme precision but also moresensitivity to detector failure and uncertainty, compare to MLP networks. This is because that localizedneural network could offer conservative regression in RBF. Adding random disturbance in trainingdataset is helpful to reduce the influence of detector failure and uncertainty. Some convolution neuralnetworks seem to be helpful to get more accurate results by use more spatial layout information, thoughrelative researches are still under way

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0