메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Oluwakemi Odukoya (University of Lagos) Solomon Nwaneri (University of Lagos) Ifedayo Odeniyi (University of Lagos) Babatunde Akodu (University of Lagos) Esther Oluwole (University of Lagos) Gbenga Olorunfemi (University of Witwatersrand) Oluwatoyin Popoola (University of Lagos) Akinniyi Osuntoki (University of Lagos)
저널정보
대한의료정보학회 Healthcare Informatics Research Healthcare Informatics Research 제28권 제1호
발행연도
2022.1
수록면
58 - 67 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: This study developed and compared the performance of three widely used predictive models?logistic regression(LR), artificial neural network (ANN), and decision tree (DT)?to predict diabetes mellitus using the socio-demographic,lifestyle, and physical attributes of a population of Nigerians. Methods: We developed three predictive models using 10 inputvariables. Data preprocessing steps included the removal of missing values and outliers, min-max normalization, and featureextraction using principal component analysis. Data training and validation were accomplished using 10-fold cross-validation. Accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under thereceiver operating characteristic curve (AUROC) were used as performance evaluation metrics. Analysis and model developmentwere performed in R version 3.6.1. Results: The mean age of the participants was 50.52 ± 16.14 years. The classificationaccuracy, sensitivity, specificity, PPV, and NPV for LR were, respectively, 81.31%, 84.32%, 77.24%, 72.75%, and 82.49%. Those for ANN were 98.64%, 98.37%, 99.00%, 98.61%, and 98.83%, and those for DT were 99.05%, 99.76%, 98.08%, 98.77%,and 99.82%, respectively. The best-performing and poorest-performing classifiers were DT and LR, with 99.05% and 81.31%accuracy, respectively. Similarly, the DT algorithm achieved the best AUC value (0.992) compared to ANN (0.976) and LR(0.892). Conclusions: Our study demonstrated that DT, LR, and ANN models can be used effectively for the prediction ofdiabetes mellitus in the Nigerian population based on certain risk factors. An overall comparative analysis of the modelsshowed that the DT model performed better than LR and ANN.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0