메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
정문재 (연세대학교) 김민수 (연세대학교) 강화평 (가천대학교) 이보라 (연세대학교) 조중현 (연세대학교) 이희승 (연세대학교) 박정엽 (연세대학교) 방승민 (연세대학교) 박승우 (연세대학교) 송시영 (연세대학교) 박준형 (한국과학기술원) 심하진 (한국과학기술원) 이정현 (한국과학기술원) 양은호 (한국과학기술원) 김은화 (연세대학교) 김광준 (연세대학교)
저널정보
연세대학교 의과대학 Yonsei Medical Journal Yonsei Medical Journal 제64권 제1호
발행연도
2023.1
수록면
25 - 34 (10page)
DOI
10.3349/ymj.2022.0381

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: Hypoxaemia is a significant adverse event during endoscopic retrograde cholangiopancreatography (ERCP) under mon itored anaesthesia care (MAC); however, no model has been developed to predict hypoxaemia. We aimed to develop and compare logistic regression (LR) and machine learning (ML) models to predict hypoxaemia during ERCP under MAC. Materials and Methods: We collected patient data from our institutional ERCP database. The study population was randomly divid ed into training and test sets (7:3). Models were fit to training data and evaluated on unseen test data. The training set was further split into k-fold (k=5) for tuning hyperparameters, such as feature selection and early stopping. Models were trained over k loops; the i-th fold was set aside as a validation set in the i-th loop. Model performance was measured using area under the curve (AUC). Results: We identified 6114 cases of ERCP under MAC, with a total hypoxaemia rate of 5.9%. The LR model was established by combining eight variables and had a test AUC of 0.693. The ML and LR models were evaluated on 30 independent data splits. The average test AUC for LR was 0.7230, which improved to 0.7336 by adding eight more variables with an l1 regularisation-based selec tion technique and ensembling the LRs and gradient boosting algorithm (GBM). The high-risk group was discriminated using the GBM ensemble model, with a sensitivity and specificity of 63.6% and 72.2%, respectively. Conclusion: We established GBM ensemble model and LR model for risk prediction, which demonstrated good potential for pre venting hypoxaemia during ERCP under MAC.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0