메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김태욱 (연세대학교) 현승민 (연세대학교(미래캠퍼스)) 홍정희 (연세대학교)
저널정보
한국융합신호처리학회 융합신호처리학회 논문지 융합신호처리학회 논문지 제23권 제4호
발행연도
2022.12
수록면
194 - 199 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
다양하고 복잡한 영상 데이터 기반의 산업에서 높은 정확도와 활용성을 위해 고품질의 데이터를 위한 전처리가 요구된다. 하지만 기존 이미지 또는 영상 데이터와 노이즈를 결합해 기업에 큰 위험을 초래할 수 있는 오염된 적대적 예제가 유입될 시 기업의 신뢰도 및 보안성, 완전한 결과물 확보를 위해 손상되기 이전으로의 복원이 필요하다. 이를 위한 대비책으로 기존에는 Defense-GAN을 사용하여 복원을 진행하였지만, 긴 학습 시간과 복원물의 낮은 품질 등의 단점이 존재하였다. 이를 개선하기 위해 본 논문에서는 VQ-VAE 모델을 사용함과 더불어 이미지 분할 여부에 따라 FGSM을 통해 만든 적대적 예제를 이용하는 방법을 제안한다. 먼저, 생성된 예제를 일반 분류기로 분류한다. 다음으로 분할 전의 데이터를 사전 학습된 VQ-VAE 모델에 전달하여 복원한 후 분류기로 분류한다. 마지막으로 4등분으로 분할된 데이터를 4-split-VQ-VAE 모델에 전달하여 복원한 조각을 합친 뒤 분류기에 넣는다. 최종적으로 복원된 결과와 정확도를 비교한 후 분할 여부에 따른 2가지 모델의 결합 순서에 따라 성능을 분석한다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0