메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
박영숙 (창신대학교 미용예술대학원 석사과정) 오윤경 (창신대학교 미용예술학과)
저널정보
국제보건미용학회 국제보건미용학회지 국제보건미용학회지 제16권 제3호
발행연도
2022.12
수록면
76 - 85 (10page)
DOI
10.35131/ishb.2022.16.3.76

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study attempted to investigate recent research trends in anti-aging through keyword network analysis with the data from the academic journal database of the NRF. For this, keywords were extracted from a total of 118 anti-aging-related papers from 2013 to 2022 and cleansed with Textom. Then, the network analysis was performed, using UCINET 6, and the results found the followings: First, in terms of keyword frequency, ‘anti-oxidation’ was the highest with 34 times, followed by ‘cosmetics (30 times)’, ‘wrinkles (23 times)’, ‘skin (19 times)’, ‘extract (17 times)’, ‘collagen (17 times)’, ‘improvement (16 times)’, ‘anti-inflammation (14 times)’ and ‘whitening (11 times)’. Second, it was able to examine inter-keyword relations by visualizing a total network structure on the ‘anti-aging’ keyword, using NetDraw. Third, according to analysis of network centrality on the ‘anti-aging’ keyword, ‘cosmetics’ was the highest in terms of degree centrality. In addition, ‘cosmetics’, ‘extract’ and ‘improvement’ revealed high network strength. In closeness centrality, it was ‘cosmetics’ which maintained the shortest distance with other keywords. According to analysis of betweenness centrality, ‘skin’ was the most frequent keyword. In addition, ‘skin’, ‘collagen’, ‘extract’, ‘melanin’ and ‘cell’ were higher in frequency ranking, showing relatively high mediating effects, compared to other keywords.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0