메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김소현 (남부대학교) 조성현 (남부대학교)
저널정보
대한통합의학회 대한통합의학회지 대한통합의학회지 제10권 제3호
발행연도
2022.8
수록면
107 - 117 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose : The purpose of this study was to establish a model of the predictive factors for success or failure of examinees undertaking the Korean physical therapist licensing examination (KPTLE). Additionally, we assessed the pass/fail cut-off point. Methods : We analyzed the results of 10,881 examinees who undertook the KPTLE, using data provided by the Korea Health Personnel Licensing Examination Institute. The target variable was the test result (pass or fail), and the input variables were: sex, age, test subject, and total score. Frequency analysis, chi-square test, descriptive statistics, independent t-test, correlation analysis, binary logistic regression, and receiver operating characteristic (ROC) curve analyses were performed on the data. Results : Sex and age were not significant predictors of attaining a pass (p>.05). The test subjects with the highest probability of passing were, in order, medical regulation (MR) (Odds ratio (OR)=2.91, p<.001), foundations of physical therapy (FPT) (OR=2.86, p<.001), diagnosis and evaluation for physical therapy (DEPT) (OR=2.74, p<.001), physical therapy intervention (PTI) (OR=2.66, p<.001), and practical examination (PE) (OR=1.24, p<.001). The cut-off points for each subject were: FPT, 32.50; DEPT, 29.50; PTI, 44.50; MR, 14.50; and PE, 50.50. The total score (TS) was 164.50. The sensitivity, specificity, and the classification accuracy of the prediction model was 99 %, 98 %, and 99 %, respectively, indicating high accuracy. Area under the curve (AUC) values for each subject were: FPT, .958; DEPT, .968; PTI, .984; MR, .885; PE, .962; and TS, .998, indicating a high degree of fit. Conclusion : In our study, the predictive factors for passing KPTLE were identified, and the optimal cut-off point was calculated for each subject. Logistic regression was adequate to explain the predictive model. These results will provide universities and examinees with useful information for predicting their success or failure in the KPTLE.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0