메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Young Ah Kim (National Health Insurance Service Ilsan Hospital) Chan In Jeon (National Health Insurance Service Ilsan Hospital) Ja Hyun Nam (National Health Insurance Service Ilsan Hospital) Da Som Lee (National Health Insurance Service Ilsan Hospital) Woo Jeong Kang (National Health Insurance Service Ilsan Hospital) Gun Hwak Lee (National Health Insurance Service Ilsan Hospital)
저널정보
대한임상검사정도관리협회 Journal of Laboratory Medicine And Quality Assurance Laboratory Medicine and Quality Assurance 제44권 제3호
발행연도
2022.9
수록면
170 - 173 (4page)
DOI
10.15263/jlmqa.2022.44.3.170

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: The coronavirus disease 2019 (COVID-19) test is very important for preventing the spread of COVID-19 and optimum treatment of patients. The purpose of this study was to retrospectively validate the performance of the Xpert Xpress severe acute respiratory syndrome coronavirus 2 (SARSCoV- 2) test using test results and clinical data. Methods: A total of 542 results of Xpert Xpress SARS-CoV-2 (a rapid test) and STANDARD M nCoV real-time detection tests (a routine and confirmatory test) were obtained from January 2021 to March 2022. Results: The two methods showed good agreement, with a kappa value of 0.9626. The results of the Xpert Xpress SARS-CoV-2 test showed sensitivity of 99.1%, specificity of 98.7%, accuracy of 99.1%, positive predictive value of 99.8%, and negative predictive value of 95.0%, compared with that of STANDARD M nCoV Real-Time Detection test. Conclusions: The Xpert Xpress SARS-CoV-2 test showed diagnostic performance comparable to that of routine COVID-19 real-time polymerase chain reaction. The Xpert Xpress SARS-CoV-2 test may be useful in reducing the burden of patient management and infection control for COVID-19.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0