메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
정우식 (세종대학교) 이혜린 (세종대학교) 김재량 (세종대학교) 이기만 (세종대학교)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제52권 제10호
발행연도
2020.10
수록면
2,221 - 2,229 (9page)
DOI
https://doi.org/10.1016/j.net.2020.03.007

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
After the Fukushima Daiichi nuclear power plant (NPP) accident, level 3 probabilistic safety assessment (PSA) has emerged as an important task in order to assess the risk level of the multi-unit NPPs in a single nuclear site. Accurate calculation of the radionuclide concentrations and exposure doses to the public is required if a nuclear site has multi-unit NPPs and large number of people live near NPPs. So, there has been a great need to develop a new method or procedure for the fast and accurate offsite consequence calculation for the multi-unit NPP accident analysis. Since the multi-unit level 3 PSA is being currently performed assuming that all the NPPs are located at the same position such as a center of mass (COM) or base NPP position, radionuclide concentrations or exposure doses near NPPs can be drastically distorted depending on the locations, multi-unit NPP alignment, and the wind direction. In order to overcome this disadvantage of the COM method, the idea of a new multiple location (ML) method was proposed and implemented into a new tool MURCC (multi-unit radiological consequence calculator). Furthermore, the MURCC code was further improved for the multi-unit level 3 PSA that has the arbitrary number of multi-unit NPPs. The objectives of this study are to (1) qualitatively and quantitatively compare COM and ML methods, and (2) demonstrate the strength and efficiency of the ML method. The strength of the ML method was demonstrated by the applications to the multi-unit long-term station blackout (LTSBO) accidents at the four-unit Vogtle NPPs. Thus, it is strongly recommended that this ML method be employed for the offsite consequence analysis of the multi-unit NPP accidents.

목차

등록된 정보가 없습니다.

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0