메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Linjun Hou (Xi’an Research Institute of Hi-Tech) Yonggang Huo (Xi’an Research Institute of Hi-Tech) Wenming Zuo (Xi’an Research Institute of Hi-Tech) Qingxu Yao (Xi’an Research Institute of Hi-Tech) Jianqing Yang (Xi’an Research Institute of Hi-Tech) Quanhu Zhang (Xi’an Research Institute of Hi-Tech)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제53권 제1호
발행연도
2021.1
수록면
208 - 215 (8page)
DOI
https://doi.org/10.1016/j.net.2020.06.004

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Cosmic-ray muon scattering tomography (MST) technology is a new radiation imaging technology withunique advantages. As the performance of its image reconstruction algorithm has a crucial influence onthe imaging quality, researches on this algorithm are of great significance to the development andapplication of this technology. In this paper, a fast inspection algorithm based on clustering analysis forthe identification of the existence of nuclear materials is studied and optimized. Firstly, the principles ofMST technology and a binned clustering algorithm were introduced, and then several simulation experimentswere carried out using Geant4 toolkit to test the effects of exposure time, algorithmparameter, the size and structure of object on the performance of the algorithm. Based on these, weproposed two optimization methods for the clustering algorithm: the optimization of vertical distancecoefficient and the displacement of sub-volumes. Finally, several sets of experiments were designed tovalidate the optimization effect, and the results showed that these two optimization methods couldsignificantly enhance the distinguishing ability of the algorithm for different materials, help to obtainmore details in practical applications, and was therefore of great importance to the development andapplication of the MST technology.

목차

등록된 정보가 없습니다.

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0