메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Vincent Z. Wang (Victoria University) Sam Fragomeni (Victoria University)
저널정보
국제구조공학회 Structural Engineering and Mechanics, An Int'l Journal Structural Engineering and Mechanics, An Int'l Journal Vol.80 No.6
발행연도
2021.12
수록면
711 - 726 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper presents a multiple parameters-based recursive methodology for the reliability quantification of civil structures subjected to meteorological disasters. Recognizing the challenge associated with characterizing at a single stroke all the meteorological disasters that may hit a structure during its service life, the proposed methodology by contrast features a multiparameter recursive mechanism to describe the meteorological demand of the structure. The benefit of the arrangements is that the essentially inevitable deviation of the practically observed meteorological data from those in the existing model can be mitigated in an adaptive manner. In particular, the implications of potential climate change to the relevant reliability of civil structures are allowed for. The application of the formulated methodology of recursive reliability quantification is illustrated by first considering the reliability quantification of a linear shear frame against simulated strong wind loads. A parametric study is engaged in this application to examine the effect of some hyperparameters in the configured hierarchical model. Further, the application is extended to a nonlinear hysteretic shear frame involving some field-observed cyclone data, and the incompleteness of the relevant structural diagnosis data that may arise in reality is taken into account. Also investigated is another application scenario where the reliability of a building envelope is assessed under hailstone impacts, and the emphasis is to demonstrate the recursive incorporation of newly obtained meteorological data.

목차

등록된 정보가 없습니다.

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0