메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이준리 (부산대학교) 안중배 (부산대학교) 정명표 (농촌진흥청 국립농업과학원) 심교문 (농촌진흥청 국립농업과학원)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제33권 제5호
발행연도
2017.10
수록면
661 - 676 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 연구에서는 남한영역에 대하여 1 km 고해상도의 계절예측 기온자료를 생산하고, 생산된 예측자료의 성능을 높이는 새로운 방법을 제안하였다. 이 새로운 방법은 총 4가지 단계의 실험으로 구성되어 있다. 첫 번째 단계인 EXP1은 PNU CGCM에서 생산된 저해상도 계절예측 기온자료이며, EXP2는 EXP1의 결과에역거리 가중법을 적용하여 생산된 남한영역의 1 km 고해상도 계절예측 기온자료이다. EXP3는 EXP2의 결과에서 위성고도자료인 ASTER GDEM을 이용하여 고도에 따른 기온변화를 추정한 후 이를 적용한 계절예측 기온자료이다. 마지막으로 EXP4는 EXP3의 결과에 유전자 알고리즘을 적용하여 모형의 예측결과 내 존재하는 계통적 오차를 보정한 결과이다. EXP1과 EXP2는 남한의 지형적 특성이 전혀 고려되지 않아 다른실험에 비해 낮은 예측성을 보였으며, 특히 고도가 높은 관측지점에서 두 실험의 예측 성능이 더욱 낮았다. 반면, 위성에서 관측된 고해상도 고도자료가 적용된 EXP3와 EXP4는 고도가 증가함에 따라 기온이 감소하는 특징 등 지형적 특성을 효과적으로 표현하면서 높은 예측성능을 보였다. 특히, 유전자 알고리즘으로 예측값의 계통적 오차가 감소된 EXP4는 다른 실험과 비교하여 시간상관성, 관측으로 정규화된 표준편차, 정답률, 오답률 등 시간에 따른 변동성에 대해서 가장 높은 예측성능을 보였다. 이는 본 연구에서 제안한 새로운 방법을 통해 고해상도 격자의 질 높은 실시간 계절예보 자료를 효과적으로 생산할 수 있음을 의미한다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0