메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김선화 ((주)유에스티21) 은정 ((주)유에스티21)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제37권 제5호
발행연도
2021.10
수록면
989 - 998 (10page)
DOI
https://doi.org/10.7780/kjrs.2021.37.5.1.13

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
구름의 영향을 크게 받는 광학위성영상의 활용에 있어 일정 주기 합성은 구름의 영향을 최소화할 수 있는 유용한 방법이다. 최근 주기 합성 시 구름과 구름 그림자 정보가 직접 입력되어 일정 주기 시 두 인자의 영향을 가장 덜 받는 최적의 화소를 선택하는 기법이 제시되었다. 최적의 합성 결과를 도출하기 위해서는 구름과구름 그림자의 정확한 추출이 필수적이다. 또한 농작물과 같이 분광정보가 중요한 대상의 경우 주기 합성 시분광정보의 손실이 최소화되어야 한다. 본 연구에서는 구름과 구름 그림자의 높은 탐지정확도를 유지하면서분광정보의 손실이 적은 탐지 기법을 도출하기 위해, 강원도 고랭지 배추밭을 대상으로 두 분광척도(Haze Optimized Tranformation; HOT, MeanVis)를 이용한 방법과 Sentinel-2A/B에서 제공되는 구름 정보를 비교 분석하였다. 2019년~2021년까지 자료를 분석한 결과 Sentinel-2A/B위성의 구름 정보는 F1값이 0.91인 탐지 정확도를 보이나, 밝은 인공물이 구름으로 오탐지되었다. 이에 비해 HOT에 임계치(=0.05)를 적용해 획득한 구름 탐지 결과는 상대적으로 낮은 탐지 정확도(F1=0.72)를 보였으나, 오탐지가 적어 분광정보의 손실을 최소화하였다. 구름 그림자의 경우, Sentinel-2A/B 부가 레이어에서는 최소한의 그림자만이 탐지된 결과를 볼 수 있었으나, MeanVis에 임계치(= 0.015)를 적용했을 시 지형적으로 발생한 그림자와 구별 가능한 구름 그림자만을 탐지할수 있었다. 분광척도 기반 구름 및 그림자 정보를 입력해 안정된 월별 합성된 식생지수결과를 획득하였으며, 향후 Sentinel-2A/B의 높은 정확도의 구름 정보를 주기 합성에 입력해 비교할 예정이다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0