메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이재세 (울산과학기술원) 강유진 (울산과학기술원) 손보경 (울산과학기술원) 임정호 (울산과학기술원) 장근창 (국립산림과학원)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제37권 제6호
발행연도
2021.12
수록면
1,719 - 1,729 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
엽면적지수는 효율적인 산림관리를 수행하기 위해 필요한 정보를 제공한다. 현재 국내 지역에 가용한고해상도 엽면적지수 자료는 유럽우주국의 Sentinel-2 위성 기반 자료가 있으나 알고리즘 개발에 국내 산림특성이 고려되지 않았고, 국내 지역에 대해 평가가 부족한 상태이다. 본 연구에서는 LAI-2200C 장비를 이용하여엽면적지수 현장관측을 실시한 뒤, 최근 다양한 연구에서 사용되는 기계학습 알고리즘 및 PROSAIL 복사전달모델을 기반으로 Sentinel-2 위성의 다중분광 센서 자료를 이용해 엽면적지수를 추정하여 기존 Sentinel-2 기반 엽면적지수 자료와 비교·분석을 진행하였다. 그 결과, 본 연구에서 개발한 모델은 기존 Sentinel-2 엽면적지수자료와 비교하였을 때, 평균 bias 및 평균 RMSE의 차이가 각각 0.97 및 0.81로 과소추정 경향을 개선하며 낮은오류를 나타내었다. 본 연구에서 개발된 엽면적지수 추정 알고리즘은 추후 국토 산림에 대한 보다 개선된 자료를 제공할 가능성을 제시하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0