메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김진국 (남서울대학교)
저널정보
한국스포츠정책과학원 체육과학연구 체육과학연구 제32권 제3호
발행연도
2021.9
수록면
411 - 418 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
[목적] 본 연구는 머신러닝을 활용하여 렛츠런 파크의 입장객 수요를 예측하는 최적의 모델을 발견하여 향후 마케팅 전략을 수립하는데 실효성 있는 자료를 제공하는데 그 목적이 있다. [방법] 이를 위해 머신러닝 방법을 랜덤포레스트, 에이다부스트, 그래디언트부스틴의 3가지 방법을 적용하였고, 입장객예측을 위한 변수는 날씨 데이터와 4년 간 날짜별 입장객 수를 훈련 데이터로 설정하고, 1년간 실제 데이터와 비교하여정확도를 예측하였다. [결과] 첫째, 랜덤포레스트를 이용하여 성능 평가를 실시한 결과 RMSE=1856.067, R²=.965였고, 오차는 6.47% 이다. 둘째, 에이다부스트를 이용하여 성능 평가를 실시한 결과 RMSE=1836.227, R²=.965였고, 오차는 5.25%로 3개의 머신러닝 중 가장 낮았다. 셋째, 그래디언트 부스팅을 이용하여 성능 평가를 실시한 결과 RMSE=1797.400, R²=.967로 3개의머신러닝 중 가장 정확도가 높았고, 오차는 6.99% 이다. [결론] 본 연구의 결과 3개의 머신러닝은 각각의 특징이 존재하였으나, 가장 성능이 우수한 모델은 그래디언트 부스팅이었다. 또한 모든 머신러닝의 결과가 대부분 언더피트(underfitting)의 경향을 보여 보다 정교한 모델을 구출하기 위해서는 이벤트, 날씨 등의 변수에 대한 전처리가 더욱 요구된다고 하겠다. 아울러 현장에서 활용할 수 있는 가장 좋은 방법은3개의 머신러닝의 결과를 종합적으로 판단하여 입장객 수를 예측하는 것이 가장 좋고, 이를 통해 효율적인 마케팅 의사결정에 도움을 줄 것으로 판단된다.

목차

등록된 정보가 없습니다.

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0