메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
홍인기 (가천대학교 방사선학과) 박민지 (가천대학교 방사선학과) 강상현 (가천대학교 방사선학과) 이영진 (가천대학교)
저널정보
대한방사선과학회 방사선기술과학 방사선기술과학 제44권 제4호
발행연도
2021.8
수록면
327 - 333 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Magnetic resonance imaging(MRI) uses strong magnetic field to image the cross-section of human body and has excellent image quality with no risk of radiation exposure. Because of above-mentioned advantages, MRI has been widely used in clinical fields. However, the noise generated in MRI degrades the quality of medical images and has a negative effect on quick and accurate diagnosis. In particular, examining a object with a detailed structure such as brain, image quality degradation becomes a problem for diagnosis. Therefore, in this study, we acquired T2 weighted 3D data of multiple sclerosis disease using BrainWeb simulation program, and used quantitative evaluation factors to find appropriate slice thickness among 1, 3, 5, and 7 mm. Coefficient of variation and contrast to noise ratio were calculated to evaluate the noise level, and root mean square error and peak signal to noise ratio were used to evaluate the similarity with the reference image. As a result, the noise level decreased as the slice thickness increased, while the similarity decreased after 5 mm. In conclusion, as the slice thickness increases, the noise is reduced and the image quality is improved. However, since the edge signal is lost due to overlapped signal, it is considered that selecting appropriate slice thickness is necessary.

목차

등록된 정보가 없습니다.

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0