메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
전성주 (인하대학교)
저널정보
사람과세계경영학회 Global Business and Finance Review Global Business and Finance Review Vol.26 No.4
발행연도
2021.12
수록면
77 - 89 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: This article investigates stock return predictability in the Korean stock market using the methodology of dynamic factor analysis. Design/methodology/approach: This article collects monthly data on the equity risk premium on the KOSPI and twelve financial and macroeconomic variables spanning from October 2000 to December 2020 and evaluates the forecasting performance of the dynamic factor predictive regression model by comparing in-sample and out-of-sample predictability with those of individual predictors. Findings: The article finds that the dynamic factor predictive regression exhibits statistically and economically significant in-sample predictability for the future equity risk premium for the KOSPI, as strongly as the best individual predictor can do. Also, the dynamic factor approach can outperform the benchmark historical average in out-of-sample predictability. The detailed analysis of the diffusion indexes reveals that each factor captures different information from various financial and macroeconomic variables relevant for return prediction and the diffusion indexes can deliver better forecasts of the future equity risk premium. Research limitations/implications: There exist different regression methods to combine forecasts comparable to the dynamic factor predictive model such as the forecast combination method by Rapach et al. (2010) and the bagging method by Inoue and Kilian (2008) and Jordan et al. (2017). The study proposes to compare the performance of these models with that of the dynamic factor predictive model in the Korean stock market as future research. Originality/value: The article is the first attempt to apply the dynamic factor predictive regression model to a large set of financial and macroeconomic data in Korea and evaluate its in-sample and out-of-sample predictability in comparison to those of individual predictive variables.

목차

등록된 정보가 없습니다.

참고문헌 (48)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0