메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김양석 (계명대학교) 나경아 (충북대학교) 강영희 (계명대학교)
저널정보
강원대학교 경영경제연구소 아태비즈니스연구 아태비즈니스연구 제12권 제4호
발행연도
2021.12
수록면
13 - 40 (28page)
DOI
https://doi.org/10.32599/apjb.12.4.202112.13

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose - The purpose of this study is to predict corporate corruption in emerging markets such as Brazil, Russia, India, and China (BRIC) using different machine learning techniques. Since corruption is a significant problem that can affect corporate performance, particularly in emerging markets, it is important to correctly identify whether a company engages in corrupt practices. Design/methodology/approach - In order to address the research question, we employ predictive analytic techniques (machine learning methods). Using the World Bank Enterprise Survey Data, this study evaluates various predictive models generated by seven supervised learning algorithms: k-Nearest Neighbour (k-NN), Naive Bayes (NB), Decision Tree (DT), Decision Rules (DR), Logistic Regression (LR), Support Vector Machines (SVM), and Artificial Neural Network (ANN). Findings - We find that DT, DR, SVM and ANN create highly accurate models (over 90% of accuracy). Among various factors, firm age is the most significant, while several other determinants such as source of working capital, top manager experience, and the number of permanent full-time employees also contribute to company corruption. Research implications or Originality - This research successfully demonstrates how machine learning can be applied to predict corporate corruption and also identifies the major causes of corporate corruption.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0