메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Xin Wang (Virginia Commonwealth University) Wei Zhang (University of Louisville)
저널정보
Korean Institute of Information Scientists and Engineers Journal of Computing Science and Engineering Journal of Computing Science and Engineering Vol.17 No.1
발행연도
2023.3
수록면
30 - 40 (11page)
DOI
10.5626/JCSE.2023.17.1.30

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Graphics processing units (GPUs) have been increasingly used to solve a range of compute-intensive and data-parallel scientific computing problems that can be perfectly parallelized for performance speedups. Particularly, GPUs have recently become popular to host the encryption/decryption algorithms due to its high-throughput computing capability. However, the security issues of moving the cryptographic algorithms onto GPUs have not been studied adequately. Consequently, with absence of any protection strategy, the potential vulnerabilities of GPUs to side-channel attacks (SCAs) may expose the confidential information with high risk. In this paper, we proposed a new profiling-assisted correlation-based side-channel attack (pacSCA) to demonstrate that ignoring security issues and naively moving security services onto GPUs can offer adversaries fatal vulnerabilities to thieve critical information. The results showed that the proposed SCA can rebuild the secure key of the AES-128 algorithm in less than 6 seconds, revealing the urgency of protecting GPUs against side-channel threats.

목차

Abstract
I. INTRODUCTION
II. BACKGROUND
III. PROFILING-ASSISTED CORRELATION-BASED SIDE-CHANNEL ATTACK
IV. METHODOLOGY & EXPERIMENTAL RESULTS
V. RELATED WORK
VI. CONCLUSION
REFERENCES

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-569-001338318