메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
안상근 (인천대학교) 조중휘 (인천대학교) 서태규 (인천대학교) 전광길 (인천대학교)
저널정보
대한임베디드공학회 대한임베디드공학회논문지 대한임베디드공학회논문지 제11권 제6호
발행연도
2016.12
수록면
361 - 367 (7page)
DOI
http://dx.doi.org/10.14372/IEMEK.2016.11.6.361

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, we propose an improved single view metrology (SVM) algorithm to accurately measure the height of objects. In order to accurately measure the size of objects, vanishing points have to be correctly estimated. There are two methods to estimate vanishing points. First, the user has to choose some horizontal and vertical lines in real world. Then, the user finds the cross points of the lines. Second, the user can obtain the vanishing points by using software algorithm such as [6-9]. In the former method, the user has to choose the lines manually to obtain accurate vanishing points. On the other hand, the latter method uses software algorithm to automatically obtain vanishing points. In this paper, we apply image resizing and edge sharpening as a pre-processing to the algorithm in order to improve performance. The estimated vanishing points algorithm create four vanishing point candidates: two points are horizontal candidates and the other two points are vertical candidates. However, a common image has two horizontal vanishing points and one vertical vanishing point. Thus, we eliminate a vertical vanishing point candidate by analyzing the histogram of angle distribution of vanishing point candidates. Experimental results show that the proposed algorithm outperforms conventional methods, [6] and [7]. In addition, the algorithm obtains similar performance with manual method with less than 5% of the measurement error.

목차

등록된 정보가 없습니다.

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0