메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국통계학회 응용통계연구 응용통계연구 제32권 제1호
발행연도
2019.2
수록면
69 - 81 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 딥러닝을 이용한 이변량 장기종속시계열(long-range dependent time series) 예측을 고려하였다. 시계열 데이터 예측에 적합한 LSTM(long short-term memory) 네트워크를 이용하여 이변량 장기종속시계열을 예측하고 이를 이변량 FARIMA(fractional ARIMA) 모형인 FIVARMA 모형과 VARFIMA 모형과의 예측 성능을 실증 자료 분석을 통해 비교하였다. 실증 자료로는 기능적 자기공명 영상(fMRI) 및 일일 실현 변동성(daily realized volatility) 자료를 이용하였으며 표본외 예측(out-of sample forecasting) 오차 비교를 통해 예측 성능을 측정하였다. 그 결과, FIVARMA 모형과 VARFIMA 모형의 예측값에는 미묘한 차이가 존재하며, LSTM 네트워크의 경우 초매개변수 선택으로 복잡해 보이지만 계산적으로 더 안정되면서 예측 성능도 모수적 장기종속시계열과 뒤지지 않은 좋은 예측 성능을 보였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001588219