메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Raman Nautiyal (Kumaun University) Neeraj Tiwari (Kumaun University) Girish Chandra (Indian Council of Forestry Research and Education)
저널정보
한국통계학회 CSAM(Communications for Statistical Applications and Methods) CSAM(Communications for Statistical Applications and Methods) 제28권 제6호
발행연도
2021.11
수록면
643 - 653 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Few studies are found in literature on estimation of population quantiles using the method of ranked set sampling (RSS). The optimal RSS strategy is to select observations with at most two fixed rank order statistics from different ranked sets. In this paper, a near optimal unbalanced RSS model for estimating p<SUP>th</SUP>(0 < p < 1) population quantile is proposed. Main advantage of this model is to use each rank order statistics and is distributionfree. The asymptotic relative efficiency (ARE) for balanced RSS, unbalanced optimal and proposed near-optimal methods are computed for dierent values of p. We also compared these AREs with respect to simple random sampling. The results show that proposed unbalanced RSS performs uniformly better than balanced RSS for all set sizes and is very close to the optimal RSS for large set sizes. For the practical utility, the near optimal unbalanced RSS is recommended for estimating the quantiles.

목차

Abstract
1. Introduction
2. Quantile estimation using ranked set sampling
3. Near optimum probability vector for quantile estimation
4. Computations of AREs
5. Case of imperfect ranking
6. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001432703