메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
High-throughput technologies enable the simultaneous evaluation of thousands of genes that could discriminate different subclasses of complex diseases. Ranking genes according to differential expression is an important screening step for follow-up analysis. Many statistical measures have been proposed for this purpose. A good ranked list should provide a stable rank (at least for top-ranked gene), and the top ranked genes should have a high power in differentiating different disease status. However, there is a lack of emphasis in the literature on ranking genes based on these two criteria simultaneously. To achieve the above two criteria simultaneously, we proposed to apply a previously reported metric, the modified area under the receiver operating characteristic cure, to gene ranking. The proposed ranking method is found to be promising in leading to a stable ranking list and good prediction performances of top ranked genes. The findings are illustrated through studies on both synthesized data and real microarray gene expression data. The proposed method is recommended for ranking genes or other biomarkers for high-dimensional omics studies.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001569689