메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박종선 (성균관대학교) 모은비 (성균관대학교)
저널정보
한국통계학회 응용통계연구 응용통계연구 제32권 제2호
발행연도
2019.4
수록면
199 - 211 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
주어진 회귀자료에 유한혼합회귀모형을 적합하는 경우 적절한 성분의 수를 선택하고 선택된 각각의 회귀모형에서 의미있는 예측변수들의 집합을 선택하며 동시에 편의와 변동이 작은 회귀계수 추정치들을 얻는 것은 매우 중요하다. 본 연구에서는 혼합선형회귀모형에서 성분의 개수와 회귀계수에 벌점함수를 적용하여 적절한 성분의 수와 각 성분의 회귀모형에 필요한 설명변수들을 동시에 선택하는 방법을 제시하였다. 성분에 대한 벌점은 성분들의 로그값에 SCAD 벌점함수를 적용하였고 회귀계수들에는 SCAD와 더불어 MCP 및 Adplasso 벌점함수들을 사용하여 가상자료와 실제자료들에 대한 결과를 비교하였다. SCAD-SCAD 벌점함수 조합과 SCAD-MCP 조합의 경우 기존의 Luo 등 (2008)의 방법에서 문제가 되었던 과적합 문제를 해결함과 동시에 선택된 성분의 수와 회귀계수들을 효과적으로 선택하였으며 회귀계수들의 추정치에 대한 편의도 크지 않았다. 본 연구는 성분의 수가 알려져 있지 않은 회귀자료에서 적절한 성분의 수와 더불어 각 성분에 대한 회귀모형에서 모형에 필요한 예측변수들을 동시에 선택하는 방법을 제시하였다는데 의미가 있다고 하겠다.

목차

Abstract
1. 서론
2. 혼합선형회귀모형(mixture of linear regression model)
3. 콤포넌트와 회귀계수에 대한 벌점함수의 적용
4. 모의실험
5. 실제자료분석
6. 결론 및 향후 과제
References
요약

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001440318