메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김재휘 (덕성여자대학교) 김재희 (덕성여자대학교)
저널정보
한국통계학회 응용통계연구 응용통계연구 제32권 제2호
발행연도
2019.4
수록면
319 - 330 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
과거의 전력소모량을 분석하여 미래의 전력소모량을 예측하는 것은 에너지 계획과 정책 결정에 있어 많은 이점을 가져다준다. 기계학습은 최근 전력소모량을 예측하는 분석 방법으로 많이 사용하고 있다. 그중 앙상블 학습은 모형의 과적합 현상을 방지하고 분산을 줄여 예측의 정확성을 높이는 방법으로 알려져 있다. 하지만 일별 데이터에 앙상블 학습을 적용했을 때 분석 방법의 특성으로 인해 피크를 잘 나타내지 못하고 중심값으로 예측하는 단점을 보였다. 본 연구에서는 앙상블 학습 전에 온도 변수와의 상관성을 고려하여 선형모형으로 적합함으로써 앙상블 학습의 단점을 보완한다. 그리고 9개의 모형을 비교한 결과 온도 변수를 선형모형으로 적합하고 랜덤포레스트를 사용한 모형이 결과가 가장 좋음을 보여준다.

목차

Abstract
1. 서론
2. 전력소모량 및 온도 데이터
3. 앙상블 학습을 이용한 전력소모량 데이터 분석
4. 기온변수를 고려한 앙상블 학습
5. 모형 설정과 분석 결과
6. 결론
References
요약

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001440383