메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
신정민 (육군사관학교) 김형우 (고려대학교) 신승준 (고려대학교)
저널정보
한국통계학회 응용통계연구 응용통계연구 제34권 제6호
발행연도
2021.12
수록면
957 - 968 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
역중도절단확률가중(inverse censoring probability weighting, ICPW)은 생존분석에서 흔히 사용되는 방법이다. 중도절단 회귀모형과 같은 ICPW 방법의 응용에 있어서 중도절단 확률의 정확한 추정은 핵심적인 요소라고 할 수 있다. 본 논문에서는 중도절단 확률의 추정이 ICPW 기반 중도절단 회귀모형의 성능에 어떠한 영향을 주는지 모의실험을 통하여 알아보았다. 모의실험에서는 Kaplan-Meier 추정량, Cox 비례위험 (proportional hazard) 모형 추정량, 그리고 국소 Kaplan-Meier 추정량 세 가지를 비교하였다. 국소 KM 추정량에 대해서는 차원의 저주를 피하기 위해 공변량의 차원축소 방법을 추가적으로 적용하였다. 차원축소 방법으로는 흔히 사용되는 주성분분석(principal component analysis, PCA)과 절단역회귀(sliced inverse regression) 방법을 고려하였다. 그 결과 Cox 비례위험 추정량이 평균 및 중위수 중도절단 회귀모형 모두에서 중도절단 확률을 추정하는 데 가장 좋은 성능을 보여주었다.

목차

Abstract
1. 서론
2. 중도절단회귀모형
3. 모의실험
4. 예시 : PBC data 분석
5. 결론
References
요약

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0