메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
류동엽 (경희대학교) 이흠철 (경희대학교) 김재경 (경희대학교)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제29권 제2호
발행연도
2023.6
수록면
35 - 56 (22page)

이용수

DBpia Top 10%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
정보통신 기술의 발전에 따라 웹 사이트에는 수많은 리뷰가 지속적으로 게시되고 있다. 이로 인해 정보 과부하 문제가 발생하여 사용자들은 본인이 원하는 리뷰를 탐색하는데 어려움을 겪고 있다. 따라서, 이러한 문제를 해결하여 사용자에게 유용하고 신뢰성 있는 리뷰를 제공하기 위해 리뷰 유용성 예측에 관한 연구가 활발히 진행되고 있다. 기존 연구는 주로 리뷰에 포함된 특성을 기반으로 리뷰 유용성을 예측하였다. 그러나, 예측한 리뷰가 왜 유용한지 근거를 제시할 수 없다는 한계점이 존재한다. 따라서 본 연구는 이러한 한계점을 해결하기 위해 리뷰 유용성 예측 모델에 eXplainable Artificial Intelligence(XAI) 기법을 적용하는 방법론을 제안하였다. 본 연구는 Yelp.com에서 수집한 레스토랑 리뷰를 사용하여 리뷰 유용성 예측에 관한 연구에서 널리 사용되는 6개의 모델을 통해 예측 성능을 비교하였다. 그 다음, 예측 성능이 가장 우수한 모델에 XAI 기법을 적용하여 설명 가능한 리뷰 유용성 예측 모델을 제안하였다. 따라서 본 연구에서 제안한 방법론은 사용자의 구매 의사결정 과정에서 유용한 리뷰를 추천할 수 있는 동시에 해당 리뷰가 왜 유용한지에 대한 해석을 제공할 수 있다.

목차

1. 서론
2. 관련 연구
3. 제안 방법론
4. 실험 결과
5. 결론
참고문헌(References)
Abstract

참고문헌 (76)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-003-001752168