메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
심응준 (클로버추얼패션) 주은정 (클로버추얼패션) 최명걸 (가톨릭대학교)
저널정보
한국컴퓨터그래픽스학회 컴퓨터그래픽스학회논문지 컴퓨터그래픽스학회논문지 제29권 제3호
발행연도
2023.7
수록면
117 - 125 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
가상 시뮬레이션을이용한 의류 디자인 개발에서는 가상과 실제의 차이가 최소화되어야 한다. 가상 의상과 실제 의상의유사성을 높이는 데에 가장 기본이 되는 작업은의상 제작에 사용될 옷감의 물성을 최대한 유사하게 표현할 수 있는 시뮬레이션 파라미터를 찾는 것이다. 시뮬레이션 파라미터 최적화 절차에는 전문가의 수작업으로 이루어지는 튜닝 과정이 포함되는데, 이 작업은 높은 전문성과 많은 시간이 요구된다. 특히 조정된 시뮬레이션 파라미터를 적용한 결과를 다시 확인하기 위해 시뮬레이션을 반복적으로 실행할 때 많은 시간이 소요된다. 최근 이 문제를 해결하기 위해 파라미터 튜닝에 주로 사용되는 드레이프 테스트 시뮬레이션 결과를 빠르게 추정하는 인공신경망 학습 모델이 제안되었다. 하지만 기존 연구에서는 비교적 간단한 선형 강성 모델을 사용하였으며 드레이프 시뮬레이션 전체를 추정하는 대신 일부만 추정하고 나머지는 보간하는 방식을 사용하였다. 실제 의류 디자인 개발 과정에서는 주로 비선형 강성 모델이 적용된 시뮬레이터가 사용되지만, 이에 대한 연구는 아직 부족하다. 본 논문에서는 비선형 강성 모델을 대상으로 드레이프 시뮬레이션 결과를 추정하기 위한 새로운 학습 모델을제안한다.본연구에서제안된학습모델은시뮬레이션결과인고해상도메시모델전체를추정한다. 제시하는방법의 성능을 검증하기 위해 세 가지 드레이프 테스트 방식을 대상으로 실험을 진행하여 추정정확도를 평가한다.

목차

요약
Abstract
1 서론
2 연구 배경
3 비선형 강성 모델
4 드레이프 방법과 학습 데이터
5 드레이프 추정 모델
6 실험 결과
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0