메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이정원 (연세대학교) 임일 (연세대학교)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제29권 제3호
발행연도
2023.9
수록면
267 - 286 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
인공지능 스피커로 대표되는 대화형 에이전트는 사람-컴퓨터 간 대화형이기 때문에 대화 상황에서 오류가 발생하는 경우가 잦다. 에이전트 사용자의 발화 기록에서 인식오류는 사용자의 발화를 제대로 인식하지 못하는 미인식오류 유형과 발화를 인식하여 서비스를 제공하였으나 사용자가 의도한 바와 다르게 인식된 오인식오류 유형으로 나뉜다. 이 중 오인식오류의 경우, 서비스가 제공된 것으로 기록되기 때문에 이에 대한 오류 탐지가 별도로 필요하다. 본 연구에서는 텍스트 마이닝 기법 중에서도 단어와 문서를 벡터로 바꿔주는 단어 임베딩과 문서 임베딩을 이용하여 단순 사용된 단어 기반의 유사도 산출이 아닌 단어의 분리 방식을 다양하게 적용함으로써 연속 발화 쌍의 유사도를 기반으로 새로운 오인식오류 및 신조어 탐지 방법을 탐구하였다.
연구 방법으로는 실제 사용자 발화 기록을 활용하여 오인식오류의 패턴을 모델 학습 및 생성 시 적용하여 탐지 모델을 구현하였다. 그 결과, 오인식오류의 가장 큰 원인인 등록되지 않은 신조어 사용을 탐지할 수 있는 패턴 방식으로 다양한 단어 분리 방식 중 초성 추출 방식이 가장 좋은 결과를 보임을 확인하였다.
본 연구는 크게 두 개의 함의를 가진다. 첫째, 인식오류로 기록되지 않아 탐지가 어려운 오인식오류에 대하여 다양한 방식 별 비교를 통해 최적의 방식을 찾았다. 둘째, 이를 실제 신조어 탐지 적용이 필요한 대화형 에이전트나 음성 인식서비스에 적용한다면 음성 인식 단계에서부터 발생하는 오류의 패턴도 구체화할 수 있으며, 오류로 분류되지 않더라도 사용자가 원하는 결과에 맞는 서비스가 제공될 수 있음을 보였다.

목차

1. 서론
2. 선행연구
3. 연구 방법
4. 분석 결과
5. 결론 및 시사점
참고문헌(References)
Abstract

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088055416