메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이미경 (이화여자대학교) 이민수 (이화여자대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회 컴퓨팅의 실제 논문지 정보과학회 컴퓨팅의 실제 논문지 제29권 제10호
발행연도
2023.10
수록면
482 - 487 (6page)
DOI
10.5626/KTCP.2023.29.10.482

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
주기적인 시계열 데이터에서는 불규칙한 패턴이 부분적으로 관측될 수 있다. 폭우에 의한 수질 변화, 연휴에 의한 대중교통 이용량 변화와 같이 불규칙한 패턴이 중요한 의미를 갖는 경우에는 이를 정확히 예측하는 것이 중요하다. 일반적인 딥러닝 기반 시계열 데이터 예측에서는 목표 변수를 도입하여 모델을 구성한다. 그러나 모델 학습에 목표 변수만을 도입할 경우 규칙적인 패턴에 비해서 불규칙한 패턴은 상대적으로 정확히 예측하지 못한다. 본 논문에서는 목표 변수가 아닌, 잠재 요인들을 특징 추출에 활용하는 불규칙 경향 예측 기법을 제안한다. 제안하는 기법에 대한 검증을 수행한 결과, 목표 변수를 직접 사용한 경우보다, 잠재 요인만을 분석에 활용한 제안하는 기법의 경우 불규칙성을 상대적으로 잘 감지하는 것을 확인하였다. 본 논문은 목표 변수를 분석에 활용하는 일반적인 시계열 예측 기법과 달리 잠재 요인만을 활용하여 목표 변수의 불규칙한 패턴을 효과적으로 예측할 수 있다는 점에서 의의가 있다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 제안하는 기법
4. 실험 및 결과 분석
5. 결론 및 향후 연구
References

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0