메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강동곤 (Soongsil University) 장영민 (Soongsil University) 이주석 (Soongsil University) 이성수 (Soongsil University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제28권 제3호
발행연도
2024.9
수록면
451 - 457 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 가격, 기후 요인, 수요, 수입량 등 다양한 변수를 데이터화한 후, LSTM(Long Short-Term Memory) 모델을 활용하여 농산물 가격을 예측하는 방법을 제안하였다. 시계열 데이터의 장기 의존성을 학습하는 LSTM 모델을 통해 예측 성능을 분석한 결과, 다양한 데이터를 통합함으로써 기존 방법보다 성능이 향상되었음을 확인하였다. 또한, 종속 변수인 가격 데이터 없이 독립 변수들만을 활용한 예측에서도 의미 있는 성과를 거두어, 모델의 발전 가능성을 확인할 수 있었다. 더 나아가, 다변수 모델을 사용할 경우 예측 성능이 더욱 개선될 수 있음을 알게 되었으며, 이러한 복합적인 접근이 배추 가격 예측의 정확도를 높이는 데 효과적임을 시사한다.

목차

Abstract
요약
I. 서론
II. LSTM
III. 데이터 전처리
IV. 모델 설계
V. 실험 결과
VI. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092380141