메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최동인 (Korea National University of Transportation) 임정수 (Korea National University of Transportation)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제28권 제10호(통권 제235호)
발행연도
2023.10
수록면
55 - 65 (11page)

이용수

DBpia Top 10%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 딥러닝 및 강화학습 연구에 대해 KeyBERT(Keyword extraction with Bidirectional Encoder Representations of Transformers) 알고리즘 기반의 토픽 추출 및 토픽 출현 빈도 분석으로 급변하는 딥러닝 관련 연구 동향 분석을 파악하고자 한다. 딥러닝 알고리즘과 강화학습에 대한 논문초록을 크롤링하여 전반기와 후반기로 나누고, 전처리를 진행한 후 KeyBERT를 사용해 토픽을 추출한다. 그 후 토픽 출현 빈도로 동향 변화에 대해 분석한다. 분석된 알고리즘 모두 전반기와 후반기에 대한 뚜렷한 동향 변화가 나타났으며, 전반기에 비해 후반기에 들어 어느 주제에 대한 연구가 활발한지 확인할 수 있었다. 이는 KeyBERT를 활용한 토픽 추출 후 출현 빈도 분석으로 연구 동향변화 분석이 가능함을 보였으며, 타 분야의 연구 동향 분석에도 활용 가능할 것으로 예상한다. 또한 딥러닝의 동향을 제공함으로써 향후 딥러닝의 발전 방향에 대한 통찰력을 제공하며, 최근 주목받는 연구 주제를 알 수 있게 하여 연구 주제 및 방법 선정에 직접적인 도움을 준다.

목차

Abstract
요약
I. Introduction
II. Preliminaries
III. The Proposed Scheme
IV. Analysis
V. Conclusion
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0