메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Vasily Sachnev (Catholic University of Korea) B. S. Mahanand (JSS Science and Technology University)
저널정보
Korean Institute of Information Scientists and Engineers Journal of Computing Science and Engineering Journal of Computing Science and Engineering Vol.17 No.3
발행연도
2023.9
수록면
127 - 134 (8page)
DOI
10.5626/JCSE.2023.17.3.127

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this work, an efficient machine learning technique for autism diagnosis using structural magnetic resonance imaging (MRI) is proposed. The proposed technique employs the voxel-based morphometry (VBM) approach to extract a set of 989 relevant features from MRI. These features are used to train an efficient extreme learning machine (ELM) classifier to identify autism spectrum disorder (ASD) and healthy controls. The proposed selective binary coded genetic algorithm (sBCGA) found a subset of significant VBM features. The selected subset of features was used to build a final ELM classifier with maximum overall accuracy. The proposed sBCGA uses a selective sample-balanced crossover designed to improve the classification of ASD and healthy controls. The proposed sBCGA has been extensively tested, and the experimental results clearly indicated better accuracy than existing methods.

목차

Abstract
I. INTRODUCTION
II. ABIDE DATABASE
III. ASD DIAGNOSTIC APPROACH USING SBCGA-ELM
IV. EXPERIMENTAL RESULTS
V. CONCLUSION
REFERENCES

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088308118