메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
윤병현 (지오포커스) 성선경 (충북대학교 토목공학과) 최재완 (충북대학교)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제39권 제2호
발행연도
2023.4
수록면
183 - 192 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
위성영상 및 항공사진과 같은 원격탐사 자료들은 영상판독과 영상처리 기법을 통하여 영상 내의 객체를탐지하고 추출하는 데에 사용될 수 있다. 특히, 원격탐사 자료의 해상도가 향상되고, 딥러닝(deep learning) 모델등과 같은 기술의 발전으로 인하여 관심객체를 자동으로 추출하여 지도갱신 및 지형 모니터링 등에 활용될 수있는 가능성이 증대되고 있다. 이를 위해, 본 연구에서는 의미론적 분할에 사용되는 대표적인 딥러닝 모델인 fullyconvolutional densely connected convolutional network (FC-DenseNet)을 기반으로 하여 항공정사영상 내 존재하는 비닐하우스를 추출하고, 이에 대한 결과를 정량적으로 평가하였다. 농림축산식품부의 팜맵(farm map)을 이용하여 담양, 밀양지역의 비닐하우스에 대한 레이블링을 수행하여 훈련자료를 생성하고, 훈련자료를 이용하여 FCDenseNet의훈련을 수행하였다. 원격탐사자료에 딥러닝 모델을 효과적으로 이용하기 위하여, 각 밴드별 특성이유지되도록 instance norm을 이용하여 정규화과정을 수행하였으며, attention module을 추가하여 각 밴드별 가중치를 효과적으로 산정하였다. 실험결과, 딥러닝 모델을 이용하여 영상 내 존재하는 비닐하우스 지역을 효과적으로 추출할 수 있음을 확인하였으며 팜맵, 토지피복지도 등의 갱신에 활용될 수 있을 것으로 판단하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0