메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
심우담 (강원대학교) 임종수 (국립산림과학원) 이정수 (강원대학교 산림환경과학대학 산림과학부 산림경영학과)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제39권 제3호
발행연도
2023.6
수록면
269 - 282 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구는 딥러닝 모델(deep learning model)을 활용하여 토지피복분류를 수행하였으며 입력 이미지의크기, Stride 적용 등 데이터세트(dataset)의 조절을 통해 토지피복분류를 위한 최적의 딥러닝 모델 선정을 목적으로 하였다. 적용한 딥러닝 모델은 3종류로 Encoder-Decoder 구조를 가진 U-net과 DeeplabV3+, 두 가지 모델을 결합한 앙상블(Ensemble) 모델을 활용하였다. 데이터세트는 RapidEye 위성영상을 입력영상으로, 라벨(label)이미지는 Intergovernmental Panel on Climate Change 토지이용의 6가지 범주에 따라 구축한 Raster 이미지를 참값으로 활용하였다. 딥러닝 모델의 정확도 향상을 위해 데이터세트의 질적 향상 문제에 대해 주목하였으며 딥러닝 모델(U-net, DeeplabV3+, Ensemble), 입력 이미지 크기(64 × 64 pixel, 256 × 256 pixel), Stride 적용(50%, 100%)조합을 통해 12가지 토지피복도를 구축하였다. 라벨 이미지와 딥러닝 모델 기반의 토지피복도의 정합성 평가결과, U-net과 DeeplabV3+ 모델의 전체 정확도는 각각 최대 약 87.9%와 89.8%, kappa 계수는 모두 약 72% 이상으로 높은 정확도를 보였으며, 64 × 64 pixel 크기의 데이터세트를 활용한 U-net 모델의 정확도가 가장 높았다. 또한 딥러닝 모델에 앙상블 및 Stride를 적용한 결과, 최대 약 3% 정확도가 상승하였으며 Semantic Segmentation기반 딥러닝 모델의 단점인 경계간의 불일치가 개선됨을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0