메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
한종원 (고려대학교 지구환경과학과) 김성룡 (고려대학교) 신동훈 (전남대학교) 이동헌 (고려대학교) 이상준 (한국교원대학교) 유승훈 (The Aerospace Corporation USA) 박동희 (한국수력원자력(주) 중앙연구원)
저널정보
한국지질과학협의회 Geosciences Journal Geosciences Journal Vol.27 No.3
발행연도
2023.6
수록면
285 - 295 (11page)
DOI
10.1007/s12303-023-0004-y

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Deep learning (DL) methods have a high potential for earthquake detection applications because of their high efficiency at processing measurement data, such as picking seismic phases. However, the performance of DL methods must be evaluated to ensure that they can replace conventional methods so that full automation can be achieved. State-of-art DL methods incorporate advanced techniques and train with large global datasets to enhance their earthquake detection capabilities. In this study, we tested a representative DL model on the 2016 Gyeongju earthquake sequence in the Korean Peninsula and compared the results with a previously established catalog and with the results of the conventional Short Time Average/Long Time Average (STA/LTA) method. The DL model demonstrated reasonable improvements in efficiency and performance by detecting more and smaller earthquakes within a much shorter runningtime than the other methods. In addition, the DL algorithms generally provided precise pickings of P- and S-wave phases. The DL model showed good generalization because it appropriately detected earthquakes in the study area that were not included in the training dataset. However, our results did suggest possible errors that should be accounted for, such as inconsistent phase picking, missing large earthquakes, and detecting non-natural earthquake signals. From the result of tests, local optimization may be important for realizing fully automatic earthquake monitoring, such as retraining with a local dataset, fine-tuning, or transfer learning. In addition, incorporating post-processing techniques such as phase association and discrimination into the DL framework is necessary.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0