메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
신유선 (순천대학교)
저널정보
한국영미어문학회 영미어문학 영미어문학 제149호
발행연도
2023.6
수록면
147 - 171 (27page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study aimed to examine the differences in translation time and quality between human translation (HT), machine translation post-editing (MTPE), and ChatGPT post-editing (ChatGPT PE). A quasi-experimental design was employed, involving 30 junior participants majoring in English from a Chinese university. A translation task consisting of 532 words from Chinese to English was assigned to the three groups and the translation speed and quality were assessed using the Multidimensional Quality Metrics (MQM) and Dynamic Quality Framework (DQF). The results demonstrated that the post-editing technique could produce translation quality comparable to human translation while achieving faster translation speed. It was observed that ChatGPT PE outputs exhibited the highest number of terminology errors but had the fewest accuracy errors, while mean differences in two of accuracy dimensions were observed among the three groups. The utilization of post-editing in language teaching would allow for the integration of machine translation strengths and human expertise, resulting in high-quality translations on par with human translations. To optimize post-editing outcomes, it is crucial to develop and teach error-detection techniques and avoid excessive reliance on AI technology.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0