메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
허선 (한림대학교 의과대학 기생충학교실 및 의학교육연구소)
저널정보
대한의사협회 대한의사협회지 대한의사협회지 제66권 제4호
발행연도
2023.4
수록면
218 - 222 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: Several chatbots that utilize large language models now exist. As a particularly well-known example, ChatGPT employs an autoregressive modeling process to generate responses, predicting the next word based on previously derived words. Consequently, instead of deducing a correct answer, it arranges the most frequently appearing words in the learned data in order. Optimized for interactivity and content generation, it presents a smooth and plausible context, regardless of whether the content it presents is true. This report aimed to examine the reliability of ChatGPT, an artificial intelligence (AI) chatbot, in diagnosing diseases and treating patients, how to interpret its responses, and directions for future development. Current Concepts: Ten published case reports from Korea were analyzed to evaluate the efficacy of ChatGPT, which was asked to describe the correct diagnosis and treatment. ChatGPT answered 3 cases correctly after being provided with the patient’s symptoms, findings, and medical history. The accuracy rate increased to 7 out of 10 after adding laboratory, pathological, and radiological results. In one case, ChatGPT did not provide appropriate information about suitable treatment, and its response contained inappropriate content in 4 cases. In contrast, ChatGPT recommended appropriate measures in 4 cases. Discussion and Conclusion: ChatGPT’s responses to the 10 case reports could have been better. To utilize ChatGPT efficiently and appropriately, users should possess sufficient knowledge and skills to determine the validity of its responses. AI chatbots based on large language models will progress significantly, but physicians must be vigilant in using these tools in practice.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0