메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
박병호 (국방대학교) 조남석 (국방대학교)
저널정보
한국재난정보학회 한국재난정보학회 논문집 한국재난정보학회 논문집 제19권 제1호
발행연도
2023.3
수록면
44 - 59 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
연구목적: 대량전상자 발생시 신속하고 정확한 환자분류가 진행되어야 최대한 많은 환자를 회복시켜 전장으로 돌려보낼 수 있다. 그러나 복잡한 전투현장에서 적은 의료인력으로 대량전상자의 환자분류를 시행하기란 임무는 과다하고 환경은 불확실하다. 따라서, 전투현장에서 의료인력을 보조하고 대체할 수 있는 인공지능 모델에 대해 논의하고자 한다. 연구방법: 인공지능의 한 분야인 강화학습을 활용하여 환자분류 모델을 제시한다. 모델의 학습은 무작위로 설정된 환자의 상태와 병원시설의 의료능력을 고려하여 최대 다수의 환자가 치료 받을 수 있는 정책을 찾도록 진행된다. 연구결과: 강화학습 모델이 정상적으로 학습되었음은 누적 보상값 등을 통하여 확인하였고, 학습된 모델이 정확하게 환자를 분류하는 것은 생존자 수를 통해 확인하였다. 또한, 규칙기반 모델과 비교하여 성능을 검증하였으며, 강화학습 모델이 규칙기반 모델에 비해 10%만큼 더 많은 환자를 생존시킬 수 있었다. 결론: 강화학습을 이용한 환자분류 모델은 의료인력의 대량전상자 환자분류 의사결정을 보조하고 대체하는 대안으로 활용이 가능하다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0