메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Yongju Kim (Pohang University of Science and Technology (POSTECH)) Jaimyun Jung (Korea Institute of Materials Science) Hyung Keun Park (Pohang University of Science and Technology (POSTECH)) Hyoung Seop Kim (Pohang University of Science and Technology (POSTECH))
저널정보
대한금속·재료학회 Metals and Materials International Metals and Materials International Vol.29 No.1
발행연도
2023.1
수록면
53 - 58 (6page)
DOI
10.1007/s12540-022-01200-0

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Manufacturing high-quality and desired products from additive manufacturing necessitate careful adjustment of the processparameters. Various methods can be utilised to determine optimum process parameters, such as the Taguchi method, Designof Experiments (DoE). Rather than evaluating limited information obtained from statistical analysis of the experiments, optimisationmethods can help find the best possible combination for the process parameters. Therefore, an optimisation approachbased on Particle Swarm Optimization (PSO) was utilised to find the optimum process parameters. The most importantprocess parameters of Selective Laser Melting (SLM) such as laser power, layer thickness, scan speed, and build orientationwere selected as input parameters, and their effects on the tensile properties of the manufactured part were investigated to findout the optimal operating conditions for the SLM process. Since there is not any explicit mathematical expression relatingthese process parameters to the tensile strength, the Response Surface Method (RSM) was used to obtain a meta-model sothat it can be used as an objective function in the optimisation formulation. This approach enabled us to predict the optimumprocess parameters to maximise the tensile strength without conducting an excessive number of experiments. Moreover, themathematical model can also predict tensile strength corresponding to the parameter values that are not tested according tothe DoE chosen for such studies. Furthermore, it was also shown that the PSO outperforms the Genetic Algorithm (GA),which is widely employed to find out the optimum process parameters, in terms of less number of iteration.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0