메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김도윤 (경상국립대학교) 권민욱 (경상국립대학교) 백승주 (경상국립대학교) 윤혜린 (경상국립대학교) 임대연 (경상국립대학교) 조은아 (프록시헬스케어) 류승재 (프록시헬스케어) 김영욱 (프록시헬스케어) 김진현 (경상국립대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.50 No.12
발행연도
2023.12
수록면
1,143 - 1,152 (10page)
DOI
10.5626/JOK.2023.50.12.1143

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
구강 건강은 수명과도 직접적 관련을 갖는 중요한 건강 지표다. 이러한 이유로 영유아부터 노인에 이르기까지 구강 건강은 국민 건강의 핵심으로 자리를 잡았다. 이러한 구강 건강의 기본은 올바른 양치 습관이다. 하지만 권장되는 올바른 양치 방법은 습관화하기 쉽지 않으며, 그러한 이유로 구강 건강에 해로운 영향을 준다. 본 논문은 올바른 양치 방법을 추적하기 위한 저비용의 IMU 센서를 통해 양치 구역을 구별하는 방법을 제안하고, 머신러닝의 클러스터링 알고리즘으로 양치 구역의 추정 방법의 정확성을 평가한다. 본 논문에서는 IMU 센서의 자이로 센서만을 사용하여 칫솔 자세만으로 양치 구역을 판단하는 방법을 제안한다. 이 논문에서는 비교적 저렴한 6축 IMU 자이로 센서 데이터만으로도 80.6%의 정확도로 사용자 양치 부위를 추정할 수 있음을 보였다. 또한, 이러한 데이터에 클러스터링 알고리즘을 적용하고 클러스터링 된 데이터를 활용하여 Logistic regression을 훈련하여 양치 구역을 추정한 결과 86.7%의 정확도로 얻을 수 있었으며 이를 통해 클러스터링이 효과적임과 함께 본 논문에서 제안한 칫솔 자세 기반의 양치 구역 추정이 효과가 있음을 보였다. 결론적으로 본 양치 구역 추정 알고리즘이 비교적 적은 비용의 칫솔로 기능이 구현될 수 있으며, 이를 통해 개인 양치 습관을 분석하고 개선함으로써 구강 건강 유지하는데에 도움이 될 것으로 기대할 수 있다.

목차

요약
Abstract
1. 서론
2. 접근 방법: 칫솔모 자세 특징 추출
3. 데이터 설명 및 클러스터링을 통한 검증
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089226893