메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jin-Kwon Lee (Gyeongsang National University Changwon Hospital) Seung-Jun Lee (Gyeongsang National University) Young-Sool Hah (Gyeongsang National University Hospital) Yeong-Ho Ji (Gyeongsang National University) Young-Tae Ju (Gyeongsang National University) Young-Joon Lee (Gyeongsang National University) Chi-Young Jeong (Gyeongsang National University) Ju-Yeon Kim (Gyeongsang National University) Ji-Ho Park (Gyeongsang National University) Jae-Myung Kim (Gyeongsang National University Hospital) Jin-Kyu Cho (Gyeongsang National University Hospital) Han-Gil Kim (Gyeongsang National University Hospital) Seung-Jin Kwag (Gyeongsang National University Hospital)
저널정보
대한외과학회 Annals of Surgical Treatment and Research Annals of Surgical Treatment and Research Vol.105 No.6
발행연도
2023.12
수록면
385 - 395 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Purpose: This study aimed to investigate the potential role of copine-1 (CPNE1), a calcium-dependent membrane-binding protein encoded by the CPNE1 gene, in colorectal cancer (CRC). Despite previous research on the involvement of copine family members in various solid tumors, the specific role of CPNE1 in CRC remains poorly understood.
Methods: We conducted clinicopathological analysis and functional studies to explore the impact of CPNE1 in human CRC. We examined the expression levels of CPNE1 in CRC patients and correlated it with invasive depth, lymph node metastasis, distant metastasis, lymphatic invasion, and TNM stage. Additionally, we performed experiments to assess the functional consequences of CPNE1 knockdown in CRC cells, including proliferation, colony formation, migration, invasion, and the expression of key regulators involved in the cell cycle and epithelial-mesenchymal transition (EMT). Furthermore, we evaluated the effects of CPNE1 knockdown on tumor growth using a xenograft mouse model.
Results: High expression of CPNE1 was significantly associated with advanced tumor features in CRC patients. CPNE1 knockdown in CRC cells led to impaired abilities in proliferation, colony formation, migration, and invasion. Furthermore, CPNE1 silencing resulted in the suppression of protein expression related to the cell cycle and EMT. In the xenograft mouse model, CPNE1 knockdown inhibited tumor growth.
Conclusion: CPNE1 plays a crucial role in promoting tumorigenesis and metastasis in human CRC. By regulating the cell cycle and EMT, CPNE1 influences critical cellular processes at the membrane-cytoplasm interface. These results provide valuable insights into the potential development of novel therapeutic strategies for CRC targeting CPNE1.

목차

INTRODUCTION
METHODS
RESULTS
DISCUSSION
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089283558